BMS COLLEGE FOR WOMEN AUTONOMOUS BENGALURU-560004

END SEMESTER EXAMINATION - OCTOBER 2022
 (CBCS)
 M.Sc. in Chemistry- II Semester
 Molecular Spectroscopy

Course Code: MCH204T

Duration: 3 Hours

QP Code:21010
Max marks: 70

Instruction: Answer Question No. 1 and any FIVE of the remaining.

1. Answer any $\boldsymbol{T E N}$ questions
a) Show that three reflection of ammonia constitute a class.
b) Prove that in BF_{3} molecule $\mathrm{C}_{3} \sigma_{\mathrm{v}} \neq \sigma_{\mathrm{v}} \mathrm{C}_{3}$
c) Using the general matrix representation for $\mathrm{C}_{\mathrm{n}}(\mathrm{z})$. Write the matrix representations for C_{3} and C_{4} operation.
d) What do the Mulliken symbol $\mathrm{B}_{1 \mathrm{~g}}$ and $\mathrm{A}_{2 \mathrm{u}}$ signify?
e) How many stretching and bending modes are present in CO_{2} and SO_{2} molecules?
f) Schematically sketch the bending modes of liner AB_{2} molecule. What happens to this mode when AB_{2} is bent?
g) How do you distinguish phosphorescence, fluorescence and Raman scattering from each other?
h) Define the term polarizability and depict the polarizability ellipsoid for $\mathrm{H}_{2} \mathrm{O}$ molecule.
i) State the law of mutual exclusion.
j) Suggest a method for studying the vibration spectrum of N_{2}. Give reasons.
k) A molecule vibrates with a frequency of $1000 \mathrm{~cm}^{-1}$. Express this energy in $\mathrm{kJ} / \mathrm{mole}$.
1) Explain the terms vibrational relaxation and internal conversion.
2. a). List the diagnostic symmetry elements and obtain the point group symmetry of the following molecules; i). $\mathrm{H}_{2} \mathrm{O}$, ii). CO_{2}, iii). $\mathrm{C}_{2} \mathrm{H}_{4}$, iV). $\mathrm{C}_{6} \mathrm{H}_{6}$, v). $\mathrm{B}_{2} \mathrm{H}_{6}$, vi). PCl_{5} b). Write the matrix notations for the symmetry operations of $\mathrm{C}_{2 \mathrm{~h}}$ point group. By matrix multiplication, prove that it is an Abelian group.

BMSCW LIBRARY

QUESTION PAPER
3. a). Construct the character table for the operations of $\mathrm{C}_{3 \mathrm{v}}$ point group. Explain each area in detail.
b). Using perturbation theory, obtain the selection rules governing the vibrational transitions of an anharmonic oscillator.
4. a). Explain the terms: Overtones, Combination bands and Fermi resonance.
b). Outline concept of normal modes of vibration of a molecule. Sketch schematically the normal modes of AB_{3}-planar molecule and comment on its IR and Raman activity. (4+6)
5. a). Write briefly on the main components of infrared spectrometer.
b). Describe the classical theory of Raman Effect.
c). A strong infrared absorption band is observed at $2991 \mathrm{~cm}^{-1}$ for ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ molecule. Calculate the force constant for this molecule.
$(4+3+3)$
6. a).The spacing between the successive line in the microwaves spectrum of CO is $3.84235 \mathrm{~cm}^{-1}$. Obtain the bond length of CO. $\left(\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js} ; \mathrm{c}=3 \times 1010 \mathrm{~m} / \mathrm{s}\right.$; $\left.\mathrm{m}_{\mathrm{H}}=1.67 \times 10^{-27} \mathrm{kgs}\right)$
b). Write the expression for the rotational energy of;
i). a rigid symmetric top and
ii). The non-rigid symmetric top.

Make schematic plots of the microwave spectra of the two by giving the selection rules.
7. a). State and explain the selection rules for the electronic transition.
b). Explain the origin of O and S branches in the vibrational-rotation Raman spectrum of a diatomic molecule.
8. a). Give comprehensive notes on: Fronck-Condon principle and Fortrat diagram.
b). Depict the electronic configuration of the ground and excited states of HCHO molecule. Explain the electronic transitions involved in it.

