BMSCW LIBRARY QUESTION PAPER

BMS COLLEGE FOR WOMEN AUTONOMOUS BENGALURU-560004

END SEMESTER EXAMINATION – OCTOBER 2022 (CBCS) M.Sc. in Chemistry- II Semester Molecular Spectroscopy

Course Code: MCH204T Duration: 3 Hours

QP Code:21010 Max marks: 70

Instruction: Answer Question No. 1 and any FIVE of the remaining.

- 1. Answer any TEN questions
- a) Show that three reflection of ammonia constitute a class.
- b) Prove that in BF₃ molecule $C_3\sigma_v \neq \sigma_v C_3$
- c) Using the general matrix representation for $C_n(z)$. Write the matrix representations for C_3 and C_4 operation.
- d) What do the Mulliken symbol B_{1g} and A_{2u} signify?
- e) How many stretching and bending modes are present in CO₂ and SO₂ molecules?
- f) Schematically sketch the bending modes of liner AB₂ molecule. What happens to this mode when AB₂ is bent?
- g) How do you distinguish phosphorescence, fluorescence and Raman scattering from each other?
- h) Define the term polarizability and depict the polarizability ellipsoid for H₂O molecule.
- i) State the law of mutual exclusion.
- j) Suggest a method for studying the vibration spectrum of N₂. Give reasons.
- k) A molecule vibrates with a frequency of 1000 cm⁻¹. Express this energy in kJ/mole.
- 1) Explain the terms vibrational relaxation and internal conversion.
- a). List the diagnostic symmetry elements and obtain the point group symmetry of the following molecules; i). H₂O, ii). CO₂, iii). C₂H₄, iV). C₆H₆, v). B₂H₆, vi). PCl₅
 - b). Write the matrix notations for the symmetry operations of C_{2h} point group. By matrix multiplication, prove that it is an Abelian group. (6+4)

(2×10 =20)

BMSCW LIBRARY

BMSCW LIBRARY QUESTION PAPER

- a). Construct the character table for the operations of C_{3v} point group. Explain each area in detail.
 - b). Using perturbation theory, obtain the selection rules governing the vibrational transitions of an anharmonic oscillator. (5+5)
- **4.** a). Explain the terms: Overtones, Combination bands and Fermi resonance.
 - b). Outline concept of normal modes of vibration of a molecule. Sketch schematically the normal modes of AB₃-planar molecule and comment on its IR and Raman activity. **(4+6)**
- 5. a). Write briefly on the main components of infrared spectrometer.
 - b). Describe the classical theory of Raman Effect.
 - c). A strong infrared absorption band is observed at 2991 cm⁻¹ for ${}^{1}H^{35}Cl$ molecule. Calculate the force constant for this molecule. (4+3+3)
- 6. a). The spacing between the successive line in the microwaves spectrum of CO is 3.84235 cm⁻¹. Obtain the bond length of CO. (h=6.626 x 10⁻³⁴ Js; c= 3 x 1010 m/s; m_H=1.67X10⁻²⁷ kgs)
 - b). Write the expression for the rotational energy of;
 - i). a rigid symmetric top and
 - ii). The non-rigid symmetric top.

Make schematic plots of the microwave spectra of the two by giving the selection rules.

(5+5)

- 7. a). State and explain the selection rules for the electronic transition.
 - b). Explain the origin of O and S branches in the vibrational-rotation Raman spectrum of a diatomic molecule. (4+6)
- 8. a). Give comprehensive notes on: Fronck-Condon principle and Fortrat diagram.
 - b). Depict the electronic configuration of the ground and excited states of HCHO molecule. Explain the electronic transitions involved in it. (5+5)

BMSCW LIBRARY